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The Source

* The normal way to obtain the kernel
source Is from the Internet as a
compressed tar file.

e The current size of this file is:

- 42 Megabytes compressed
- 250 Megabytes uncompressed.
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Directory Structure

* The “arch” subdirectory contains all the
support for different machine
architectures.

* This is where non-portable code should
be located.

« Many architectures are supported
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Supported architectures

alpha e arm ° arm26
Cris o frv e h8300
1386 * |a64  M32r
m68k e m68knommu ¢ mips
parisc e powerpc * ppcC

s390 e sh « sh64
sparc e sparct4 e um

v850  X86 64 e xtensa
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Include files

 The include files also have machine
dependent directories.

- asm-i386
- asm-iab4
* The “asm” directory is a symbolic link to

a particular architecture directory (e.g.
asm-i386)
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Portable Source

 All other sources are portable code.

» The vast majority of code is portable.
* There a other notable directories

- kernel - fs
— drivers — init
- mm - sound

— net
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A Stroll Down A Link
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Linked Lists

* There is nothing simpler than a linked
list.

 We will examine the linked list
implementation in Linux and we will see
that even simplicity can be deceptive.

e This example will give us a gentle
introduction to the style and structure of
Linux.
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Linux Link Implementation

* The kernel has an interesting
implementation of a linked list that is a
good example of the organization and

the coding style of t
e This example also |

ne Linux kernel.

lustrates some of the

design rules Linux coding.

« Of course everything C code — more or

less.
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The 1ist head Structure

// From include/linux/list.h

struct list head {
struct list head *next, *prev;

b7
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Use of list head

* This is pretty useless as is.

* Any structure that we want to link
together as a linked list we just add
list head as an element:

struct mylist{

int a;

struct list head list;
int b;
} ml;
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Initializing the List

e First we Initialize the list.

INIT LIST(&ml.list);

// from include/linux/list.h
static inline void
INIT LIST HEAD(struct list head *list)
{
list->next = list;
list->prev = list;
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Adding to List

« We can add a link to the list.

static inline
void list add(struct list head *new, struct list head *head)

{

list add(new, head, head->next);

}

static inline void _ list add(struct list head *new,
struct list head *prev,
struct list head *next)

next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
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Check if list is empty?

static inline int list empty(const struct list head *head)

{

return head->next == head;

}
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Traversing the List

struct list head *p;

list for each(p, &lm.list){
struct my struct *m;
m= list entry(p, struct my struct, list);

}

Now things are getting weird.
Have a look at the last two arguments
to “list_entry”
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Traversing the List

#define list for each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)

The prefetch() function will do a
speculative load of the next element.
It is defined as a null operator in some

architectures.
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list_entry

#define list entry(ptr, type, member) \
container of(ptr, type, member)

#define container of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) * mptr = (ptr); \
(type *)( (char *) mptr - offsetof(type,member) );})

#ifdef compiler offsetof

#define offsetof (TYPE,MEMBER)  compiler offsetof(TYPE,MEMBER)
telse

#define offsetof (TYPE, MEMBER) ((size t) &((TYPE *)0)->MEMBER)
tendif

Not very nice code.
Linus tends to put all the ugly things in 'h' files.
The C code is readable.
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Processes

Process == Task == Thread

Linux uses these three names
iInterchangeably
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The Process Table

e The process table consists of a collection
of objects of types “struct task struct”.

» Each process has a “struct thread_struct”
at the end of the kernel process stack that
has as its first element a pointer to
“task_struct”.

* The process table can be enumerated by
a link in the “task_struct”
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Kernel Mode Stack

thread struct

task struct
4 or 8 Kbytes B

page aligned
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Time for a quiz

{

xtype *p;

char *q;

p= (xtype *) *(long *)(((long) qg) & ~Ox1fff);
}

The question is:
What does “p” point to?
What type is “xtype”?
Hint: the kernel stack is 8K bytes.
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The Answer Is ...

* This code is very strange.

| normally wouldn't show this code but it
IS used heavily in the kernel via inline
routines.

* Even experienced kernel programmer
might not recognize it since it usually is
hidden deep within the processor
dependent include files.
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The Answer

* This code is used to return the
“task_struct” of the user process.

» The tricky idea is that any address on

i
i
i

ne kernel mode stack when aligned to
ne nearest 8 Kb boundary will point to

ne “thread_struct”.

* The first element of the “thread struct”
points to the “task_struct” which is the
process entry.
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current_thread_info()
asm/thread _info.h

/* how to get the current stack pointer from C */
register unsigned long current stack pointer asm("esp")
__attribute used ;

/* how to get the thread information struct from C */
static inline struct thread info *current thread info(void)
{

return (struct thread info *)(current stack pointer

& ~(THREAD SIZE - 1));
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current
asm/current.h

static _ always inline struct task struct *
get current(void)

{
return current thread info()->task;

}

#define current get current()
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