Ascender Technologies Ltd.

Linux Internals
Day 1- Afternoon
Introduction to the Linux Kernel

Joel Isaacson

Ascender Technologies Ltd

Copyright 2006
This work is licensed under the

Creative Commons Attribution License.

Ascender Technologies Ltd.

The Source

* The normal way to obtain the kernel
source Is from the Internet as a
compressed tar file.

e The current size of this file is:

- 42 Megabytes compressed
- 250 Megabytes uncompressed.

Ascender Technologies Ltd.

Directory Structure

* The “arch” subdirectory contains all the
support for different machine
architectures.

* This is where non-portable code should
be located.

« Many architectures are supported

Ascender Technologies Ltd.

Supported architectures

alpha e arm ° arm26
Cris o frv e h8300
1386 * |a64 M32r
m68k e m68knommu ¢ mips
parisc e powerpc * ppcC

s390 e sh « sh64
sparc e sparct4 e um

v850 X86 64 e xtensa

Ascender Technologies Ltd.

Include files

 The include files also have machine
dependent directories.

- asm-i386
- asm-iab4
* The “asm” directory is a symbolic link to

a particular architecture directory (e.g.
asm-i386)

Ascender Technologies Ltd.

Portable Source

 All other sources are portable code.

» The vast majority of code is portable.
* There a other notable directories

- kernel - fs
— drivers — init
- mm - sound

— net

Ascender Technologies Ltd.

A Stroll Down A Link

Ascender Technologies Ltd.

Linked Lists

* There is nothing simpler than a linked
list.

 We will examine the linked list
implementation in Linux and we will see
that even simplicity can be deceptive.

e This example will give us a gentle
introduction to the style and structure of
Linux.

Ascender Technologies Ltd.

Linux Link Implementation

* The kernel has an interesting
implementation of a linked list that is a
good example of the organization and

the coding style of t
e This example also |

ne Linux kernel.

lustrates some of the

design rules Linux coding.

« Of course everything C code — more or

less.

Ascender Technologies Ltd.

The 1ist head Structure

// From include/linux/list.h

struct list head {
struct list head *next, *prev;

b7

Ascender Technologies Ltd.

Use of list head

* This is pretty useless as is.

* Any structure that we want to link
together as a linked list we just add
list head as an element:

struct mylist{

int a;

struct list head list;
int b;
} ml;

Ascender Technologies Ltd.

Initializing the List

e First we Initialize the list.

INIT LIST(&ml.list);

// from include/linux/list.h
static inline void
INIT LIST HEAD(struct list head *list)
{
list->next = list;
list->prev = list;

Ascender Technologies Ltd.

Adding to List

« We can add a link to the list.

static inline
void list add(struct list head *new, struct list head *head)

{

list add(new, head, head->next);

}

static inline void _ list add(struct list head *new,
struct list head *prev,
struct list head *next)

next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;

Ascender Technologies Ltd.

Check if list is empty?

static inline int list empty(const struct list head *head)

{

return head->next == head;

}

Ascender Technologies Ltd.

Traversing the List

struct list head *p;

list for each(p, &lm.list){
struct my struct *m;
m= list entry(p, struct my struct, list);

}

Now things are getting weird.
Have a look at the last two arguments
to “list_entry”

Ascender Technologies Ltd.

Traversing the List

#define list for each(pos, head) \
for (pos = (head)->next; prefetch(pos->next), pos != (head); \
pos = pos->next)

The prefetch() function will do a
speculative load of the next element.
It is defined as a null operator in some

architectures.

Ascender Technologies Ltd.

list_entry

#define list entry(ptr, type, member) \
container of(ptr, type, member)

#define container of(ptr, type, member) ({ \
const typeof(((type *)0)->member) * mptr = (ptr); \
(type *)((char *) mptr - offsetof(type,member));})

#ifdef compiler offsetof

#define offsetof (TYPE,MEMBER) compiler offsetof(TYPE,MEMBER)
telse

#define offsetof (TYPE, MEMBER) ((size t) &((TYPE *)0)->MEMBER)
tendif

Not very nice code.
Linus tends to put all the ugly things in 'h' files.
The C code is readable.

Ascender Technologies Ltd.

Processes

Process == Task == Thread

Linux uses these three names
iInterchangeably

Ascender Technologies Ltd.

The Process Table

e The process table consists of a collection
of objects of types “struct task struct”.

» Each process has a “struct thread_struct”
at the end of the kernel process stack that
has as its first element a pointer to
“task_struct”.

* The process table can be enumerated by
a link in the “task_struct”

Ascender Technologies Ltd.

Kernel Mode Stack

thread struct

task struct
4 or 8 Kbytes B

page aligned

Ascender Technologies Ltd.

Time for a quiz

{

xtype *p;

char *q;

p= (xtype *) *(long *)(((long) qg) & ~Ox1fff);
}

The question is:
What does “p” point to?
What type is “xtype”?
Hint: the kernel stack is 8K bytes.

Ascender Technologies Ltd.

The Answer Is ...

* This code is very strange.

| normally wouldn't show this code but it
IS used heavily in the kernel via inline
routines.

* Even experienced kernel programmer
might not recognize it since it usually is
hidden deep within the processor
dependent include files.

Ascender Technologies Ltd.

The Answer

* This code is used to return the
“task_struct” of the user process.

» The tricky idea is that any address on

i
i
i

ne kernel mode stack when aligned to
ne nearest 8 Kb boundary will point to

ne “thread_struct”.

* The first element of the “thread struct”
points to the “task_struct” which is the
process entry.

Ascender Technologies Ltd.

current_thread_info()
asm/thread _info.h

/* how to get the current stack pointer from C */
register unsigned long current stack pointer asm("esp")
__attribute used ;

/* how to get the thread information struct from C */
static inline struct thread info *current thread info(void)
{

return (struct thread info *)(current stack pointer

& ~(THREAD SIZE - 1));

Ascender Technologies Ltd.

current
asm/current.h

static _ always inline struct task struct *
get current(void)

{
return current thread info()->task;

}

#define current get current()

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

Ascender Technologies Ltd.

