Ascender Technologies Ltd.

Day 1
Monday 31/8/09

Joel Isaacson
Ascender Technologies Ltd.
http://ascender.com

Copyright 2009 Joel Isaacson
This work is licensed under the
Creative Commons Attribution-Share Alike 3.0 license
http://creativecommons.org/licenses/by-sa/3.0/us
http://creativecommons.org/licenses/by-sa/3.0/us/deed.he

©00]

http://creativecommons.org/licenses/by-sa/3.0/us

Ascender Technologies Ltd.

Today's Lectures

» Today we will start by examining the
design of the Linux applicative
programmable interface (API).

* You might think that Linux is simply a
generic Posix system.

e This view ignores the consistent design
principles of Linux that are not present Iin
other Unix implementations

Ascender Technologies Ltd.

Linux Simple Abstractions

 Linux tries to use a minimal number of
concepts and extends their semantics to
provide a synergistic effect.

 Many concepts from non-Posix
operating systems such as Plan9 have
been incorporated into Linux.

Ascender Technologies Ltd.

Linux Simple Abstractions

Files
Processes

Memory Spaces
IPC

Ascender Technologies Ltd.

Files

* The hierarchical file systems is
fundamental to Unix-Posix systems.

* The well know open-read-write-close
paradigm is used.

« We shall see that Linux has extended
flle abstractions farther than most Unix
systems.

Ascender Technologies Ltd.

Files — Hierarchical Structure

* The hierarchical file system consists of
a singly rooted tree.

* This is different than systems like MS
Windows that have multiple roots.

 The mount system call grafts a subtree
onto the file system.

 The nodes of the tree are directories.
e Directories are unordered lists of files.

Ascender Technologies Ltd.

Files - Namespace

 Files can be accessed via the file
namespace.

« Objects within the namespace are
simply strings of characters.

* The only character that has any special
significance is the /' character which is
the directory delimiter.

Ascender Technologies Ltd.

Files — API Creation/Deletion

* Files are created/deleted via the
standard Posix API's
e creat
e Open
e mkdir/rmdir
e 1ink/unlink

Ascender Technologies Ltd.

Files — File Descriptors

* Most operations that access a file
usually use a handle to the file called a
file descriptor.

* Pre-existing files are normally
associated with the file's namespace via
the open system call.

e open returns a file descriptor.

Ascender Technologies Ltd.

Files - Read/Write

 The content of files can be accessed via
the read/write system calls.

 read/write copies the contents
from/to the file to/from the process's
memory space.

 Files are frequently used to provide
persistence of data.

Ascender Technologies Ltd.

Files — Regular Files

e Persistent files stored on disk.
» Byte streams

» Each open file has an associated file
offset.

o Writing within the file overwrites te
previous results

* The file's length can be changed by

truncate.

Ascender Technologies Ltd.

Files — Directories

* Provides namespace with which to
access files.

« When a fully qualified (name starting
with /) filename is opened, the kernel
walks the directories in the filename until
the regular file is opened.

 Relative filenames start at the current
directory

Ascender Technologies Ltd.

Files — Hard Links

e The files themselves are stored as a
linear list of files.

« Each file has a unique index called an I-
node.

* A hard link is an entry in a directory that
map a filename to an i-node.

« Each file can have more than one hard
link.

Ascender Technologies Ltd.

Files — Symbolic Links

» Symbolic links look like regular files.

* The content of the file is just the name of
a file that must be opened to find the
actual data of the requested file.

« Symbolic links that don't point to valid
files are called broken.

« Hard links cannot span different
filesystems. Symbolic links can.

Ascender Technologies Ltd.

Files — Special Files

* Represent kernel objects.

 Linux has four types of special files.

- Block

— Character

- Named Pipes

- Unix Domain Sockets

Files — Special Files
Block

* Devices through which the system
moves data in the form of blocks.

» Block special file often represent
addressable devices such as hard disks,
CD-ROM drives, or memory-regions.

» Access is random read/write.
« Can be mounted as a filesystem.

Ascender Technologies Ltd.

Files — Special Files

Characters
» Linear queue of bytes.

* Not necessarily random read/write.
 Typically keyboard, mouse.
« At end of file returns EOF.

Ascender Technologies Ltd.

Files — Special Files
Named Pipes

 Often called fifos.
 Are used in IPC.

» Regular pipes are used to communicate
between related processes.

 Named pipes can be used between
unrelated processes.

* | generally prefer Unix Domain Sockets.

Ascender Technologies Ltd.

Files — Special Files

Unix Domain Sockets
e Uses the standard BSD socket interface.

e Uses a filename in bind-connect rather
than an IP number.

« Only works within one computer.

Ascender Technologies Ltd.

Processes

Processes contain the basic state of
computation.

_inux has a very efficient process model.

_inux does not have an independent
_WP (Light Weight Process — threading)
model.

Threads are processes.

Ascender Technologies Ltd.

Processes

* Processes also contain a possibly
sparse array of open files.

* The file descriptor is just an index into
this array.

* An open file has an associated file
pointer that contains the byte count
position within that file.

Ascender Technologies Ltd.

Memory Spaces

 Memory spaces provides the glue that
bind Files and Processes.

* They are usually associated with a
process and contain memory areas that
can map:

e Files

« Shared Memory
* Device Memory

Ascender Technologies Ltd.

Memory Spaces
Continued

A memory area might have:

« COW (Copy On Write — Private) semantics.
e Shared memory semantics

Ascender Technologies Ltd.

IPC
Inter-Process Communication

e Linux's IPC is based on the BSD socket
API.

e It works both within one computer (Unix
domain sockets) and between computer
(usually via TCP/IP)

Ascender Technologies Ltd.

Files:

/proc and /sys file systems

* The /proc file system was pioneered in
Bell Labs influential but not very popular

P

e T
e

an9 operating system.
ne /proc and /sys file system has

iminated thousands of application

specific API's.

Ascender Technologies Ltd.

Memory Spaces — Unix(1974)

o » This is the standard

5 initial configuration of

Bss the memory spaces

Heap) of a process after
exec.

e There are five
memory segments:

text, data, bss,
heap and stack

Stack f

Ascender Technologies Ltd.

Static Compilation

S cat t.c

main()

{
char b[100];
gets(b);

}

S cc -static t.c

S ./a.out &

[1] 27206

Ascender Technologies Ltd.

Statically Linked

a)
0x08048000
Text 460kb
0x080bb000
0x080bd000 Data 8kb
Heap + Bss 140kb
0x080e0000
O0xbff87000
Stack f 88kb
0xbff9d000
1\ J
S size a.out
text data bss dec hex filename
470068 1928 6880 478876 74e9c a.out

r—xp

IwXp

IwXp

rw=p

Ascender Technologies Ltd.

Private Segments
Copy on Write (COW)

All memory spaces that we have seen until now
have had the 'p' attribute i.e. COW semantics.
This means that initially the contents of the space
are shared. If there are changes done to the
memory space, a page fault is raised which
causes a new copy of that page to be allocated.
This allows fast execve's since nothing initially has
to be copied. This is a form of /lazy copying.

Ascender Technologies Ltd.

Shared Library Compilation

S cat t.c
main()
{
char b[100];
gets(b);
}
S cc t.c
S ./a.out &
[1] 27206

$ cat /proc/27206/maps

08048000-08049000
08049000-0804a000
b7e2e000-b7e2£000
b7e2f000-b7£73000
b7£73000-b7£74000
b7£74000-b7£76000
b7£76000-b7£79000
b7£90000-b7£93000
b7£93000-b7£ad000
b7fad000-b7£faf000
bfcbe000-bfcd4000
ffffe000-f££££000

r-xp
rwxp
rwxp
r-xp
r-xp
rwxp
rwxp
rwxp
r-xp
rwxp
rw-p
r-xp

00000000
00000000
b7e2e000
00000000
00143000
00144000
b7£76000
b7£90000
00000000
00019000
bfcbe000
00000000

08:
:05
00:
08:
08:
08:
00:
00:
08:
08:
00:
00:

08

05

00
03
03
03
00
00
03
03
00
00

Ascender Technologies Ltd.

Shared Library

198109
198109
0
1934283
1934283
1934283
0

0
1901413
1901413
0

0

a.out
a.out

libc-2.6.1.s0
libc-2.6.1.s0
libc-2.6.1.s0

1d-2.6.1.s0
1d-2.6.1.s0
[stack]
[vdso]

0x08048000
0x08049000
0x0804a000

0xb7e34000

0xb7£78000
0xb7£79000

0xb7£7b000

0xb7£f7e000
0xb7£93000
0xb7fad000

0xb7faf000
0xbfcbe000

0xbfcd4000

Ascender Technologies Ltd.

Shared Libraries

S size a.out

text
952

\
Text 4kb
Data + Bss 4kb
libc — Text 1296kb
libc — Got 4kb
libc — Data 8kb
Zero - Bss 12kb
Id.so — Text 104kb
Id.so — Data, Bss 8kb
Stack f 88kb
_ J
data bss dec hex filename
272 4 1228 4cc a.out

r-xp
rwxp

r-xp
r-xp
rwxp

rwxp

r-xp

IwXp

rw=p

Ascender Technologies Ltd.

Fork/Clone

* The only way to create a process is
through the clone (fork) system call.

* The default is to create a process that
iInherits the parent's processes memory
spaces through COW semantics.

* A thread is created via the clone system
call with the CLONE_VM argument.

e Threads are no more efficient than
Processes.

Ascender Technologies Ltd.

Posix Processes

Text
Data + Bss
libe - Text
lib¢ - Gat
libc - Data
Zero - Bss
Idso - Text
Id.so - Data, Bss
Stack f
~
Text Text
Data + Bss Data + Bss
libc - Text libc - Text
libc - Got libc - Got
libc - Data libc - Data
Zero - Bss Zero - Bss
Id.so - Text Id.so - Text
ld.so - Data, Bss ld.so - Data, Bss
Stack [Stack 1|
Toxt Toxi Text
Data + Bss Data + Bss Data + Bss.
libc - Text libc - Text libe - Text
libe - Got libe - Got libe - Got
libc - Data libe - Data libc - Data
Zero - Bss Zero - Bss Zoro- Bss
Id.so - Text Id.so - Text Id.so - Text
Id.so - Data, Bss Id.so - Data, Bss Id.so - Data, Bss
Stack f Stack)

Ascender Technologies Ltd.

Posix Threads

Thread Group

-

L L LT

Text

Data + Bss

libe - Text

libc - Got

libc - Data

Zero - Bss

Id.s0 - Text

Id.so - Data, Bss

Stack

Text

Data + Bss

bl T

libc - Text

libc - Got

-~
~eo
-
~e

libc - Data

Zero - Bss

Id_so - Text

Id.so - Data, Bss

Stack

1
1
1
1
1
1
1
1
)
1
1
1
1
1
n
'
1
L)

Text
Data + Bss

libe - Text

libc - Got

libe - Data

Zero - Bss

Id so - Text

Id.so - Data, Bss

Stack

T

Text

Data + Bss

libe - Text

libc - Got

libc - Data

Zero - Bss

Id.so - Text

Id.s0 - Data, Bss

Stack

Text

Data + Bss

libe - Text

libe - Got

libc - Data

Zero - Bss

Id.s0 - Text

Id.s0 - Data, Bss

Stack

~ _————
- -
.

~

Text

Data + Bss

libe - Text

libc - Got

libc - Data

Zero - Bss

Id.so - Text

Id.s0 - Data, Bss

Ascender Technologies Ltd.

exec

* The exec system call is used to create a
new memory space.

* The initial memory space right after the
exec system call has four memory
areas:

e Text
e Data

* Bss
e Stack

Ascender Technologies Ltd.

Kernel Threads

« What is this strange creature?

e Simply a process that runs without a
attached memory space (mm == 0).

* The kernel memory space is mapped.
e Scheduled exactly as any other process.

« Used to provide an independent “user
context” to kernel functionality.

Ascender Technologies Ltd.

Real Programmers Don't Use

Threads

Asynchronous /O

Signals

Semaphores

Real-time Scheduling
Unbridled loctl's

Massive Kernel Code Dumping

Ascender Technologies Ltd.

Kernel-User API

 User ABI-API stable.
 Kernel API unstable.

Ascender Technologies Ltd.

Processes

Process == Task == Thread

Linux uses these three names
interchangeably

Ascender Technologies Ltd.

Scheduling

 Linux is a multitasking operating system,
having many processes resident in
memory at one time.

 Each processes has the illusion that it
has a CPU of it own.

* Deciding which processes are to be run
IS the job of the scheduler.

Ascender Technologies Ltd.

Process Scheduling

The fundamental task of the scheduler is to
choose, at any one time, from the set of
runnable processes, m, only n, where nis

the number of CPU's present, processes to
run.

If m is less than n this task is trivial.

Ascender Technologies Ltd.

Scheduling

* The scheduler is the kernel component
that selects among processes that are
runnable.

« The scheduler effectively provides a
time-multiplexed CPU to many
iIndependent processes.

Ascender Technologies Ltd.

Scheduling

» Multitasking operating systems come in
to varieties:

— cooperative multiprocessing and
- preemptive multiprocessing.

« Cooperative multiprocessing (like
Windows 3.1) only schedule processes
after they yield the CPU.

Ascender Technologies Ltd.

Scheduling

« With preemptive multiprocessing
processes run for a maximum period of
time, called a timeslice (or quantum),
and then they are halted to give other
runnable processes a chance to run.

* Linux uses a classical preemptive multi-
priority queue scheduler with some
novel innovations that where present in
the first Unix system of the 1970's.

Ascender Technologies Ltd.

Scheduling

* The thing that differentiates the Linux
scheduler from RTOS schedulers is
dynamic-priority setting and the way that
processes are suspended from
rescheduling until all other processes
have completed their time slices.

Ascender Technologies Ltd.

Scheduling

e |t is important to note that standard
Linux (or standard POSIX in fact)
actually has three different schedulers.

 There are two real-time (see 'man
sched setscheduler') schedulers,
SCHED_ FIFO and SCHED RR, that
take precedence over the the standard
Linux scheduler, SCHED OTHER.

Ascender Technologies Ltd.

Scheduling

* The scheduler policy is the method by
which the dynamic priorities are
determined.

* The main rational is to allow good
interactive behavior (low latency) and to
globally optimise CPU utilization.

Ascender Technologies Ltd.

Scheduling

« Conceptually it is useful to divide
processes into two classes:

- 1/O bound (or interactive) and
- CPU bound (or compute intensive).

e Of course in general a process may be
somewhere between these two
definitions and might change its class
many times during its execution.

Ascender Technologies Ltd.

Scheduling

* The general idea is to give interactive
processes higher priority and longer
timeslices so that intercative users of the
system experience low latency.

* A interactive processes is defined as a
processes that spends most of its time
on a wait queue, in a unrunnable state.

Ascender Technologies Ltd.

Scheduling

« Compute bound processes are mostly in
a runnable state.

» This observation has proven extremely
successful and is the basis of all Unix
schedulers for the last 35 years.

Ascender Technologies Ltd.

Scheduling

* For example: if the system has two
runnable processes, an editor, and a
process to compute the value of m, to
20000 digits.

 We would want to give the editor a
higher priority. Otherwise the interactive
use will be quite unhappy.

Ascender Technologies Ltd.

Scheduling

 This naturally happens with the standard
Linux scheduler since the text editor is
normally spending 99% of the time in a
wait queue waiting for keyboard input.

Ascender Technologies Ltd.

Scheduling

 |In addition Unix and Linux allows the
user to give a nice value which is added
to the dynamic priority in order to give
the scheduler information from the user
about the relative importance of different
processes.

Ascender Technologies Ltd.

Scheduling

* The nice value effect the amount of time
the process will consume in relationship
to other processes, but no process will
starve for CPU time.

Ascender Technologies Ltd.

Scheduling — O(1) Algorithm

e During the Linux 2.5.x development
period, a new scheduling algorithm was
one of the most significant changes to
the kernel.

e The Linux 2.4.x scheduler, while widely
used, reliable, and in general pretty
good, had several very undesirable
characteristics.

Ascender Technologies Ltd.

Scheduling — O(1) Algorithm

« The undesirable characteristics were
quite embedded in its design.

e The fact that the Linux 2.4.x scheduling
algorithm contained O(n) algorithms was
perhaps its greatest flaw, and
subsequently the new scheduler's use of
only O(1) algorithms was its most
welcome improvement.

Ascender Technologies Ltd.

Scheduling — O(1) Algorithm

e The Linux O(1) scheduler does not
contain any algorithms that run in worse
than O(1) time.

* That is, every part of the scheduler is
guaranteed to execute within a certain
constant amount of time regardless of
how many tasks are on the system.

Scheduling — O(1) Algorithm

 This allows the Linux kernel to efficiently
handle massive numbers of tasks
without increasing overhead costs as the
number of tasks grows.

* There are two key data structures in the
Linux O(1) scheduler and its design
revolves around them:

- runqueues and
— priority arrays.

Runqueue — O(1) Algorithm

e The algorithm uses two structure of type
priority_array, in kernel/sched.c,

struct prio array {
int nr_ active;
unsigned long bitmap[BITMAP SIZE];
struct list head queue[MAX PRIO];

}i

Ascender Technologies Ltd.

Runqueue — O(1) Algorithm

schedule()

sched_find_first_set()

bit O priority O (
Q qA:/H”—\ bit 7 (priority 7) =————

lists of all runnable
tasks, by priority

140-bit priority array ‘ ‘ /
bit 139 (priority 139)

list of runnable tasks

run the first process in the list o
for priority 7

Ascender Technologies Ltd.

The Process Table

e The process table consists of a collection
of objects of types “struct task_struct”.

» Each process has a “struct thread_struct”
at the end of the kernel process stack that
has as its first element a pointer to
“task_struct”.

» The process table can be enumerated by
a link in the “task_struct”

Ascender Technologies Ltd.

Kernel Mode Stack

—

thread struct

4 or 8 Kbytes A task struct

page aligned

Ascender Technologies Ltd.

Time for a quiz

{

xtype *p;

char *q;

p= (xtype *) *(long *)(((long) & gq) & ~O0x1fff);
}

The question is:
What does “p” point to?
What type is “xtype”?
Hint: the kernel stack is 8K bytes.

Ascender Technologies Ltd.

The Answer Is ...

» This code is very strange.

| normally wouldn't show this code but it
IS used heavily in the kernel via inline
routines.

* Even experienced kernel programmer
might not recognize it since it usually is
hidden deep within the processor
dependent include files.

Ascender Technologies Ltd.

The Answer

* This code is used to return the
“task_struct” of the user process.

* The tricky idea is that any address on

i
i
i

ne kernel mode stack when aligned to
ne nearest 8 Kb boundary will point to

ne “thread_struct”.

* The first element of the “thread struct”
points to the “task_struct” which is the
process entry.

Ascender Technologies Ltd.

current_thread_info()
asm/thread _info.h

/* how to get the current stack pointer from C */
register unsigned long current stack pointer asm("esp")
__attribute used ;

/* how to get the thread information struct from C */
static inline struct thread info *current thread info(void)
{

return (struct thread info *)(current stack pointer

& ~(THREAD SIZE - 1));

Ascender Technologies Ltd.

current
asm/current.h

static _ always inline struct task struct *
get current(void)
{

return current thread info()->task;

}

#define current get current()

Ascender Technologies Ltd.

System Calls

e The system call is (usually) called from
user space.

 This causes a switch to kernel mode
(ring 3 -> ring 0).

o |t also causes the upper 1 giga byte
(0xc0000000 — Oxffttffff) to be memory
mapped.

Ascender Technologies Ltd.

System Calls

* The system call is a synchronous
exception.

o |tis actually either and “INT 80" or a
‘sysenter”.

* In Linux a new “vsyscalls” mechanism
through the mapping to the kernel page
“[vdso]”

Ascender Technologies Ltd.

System Calls
» Each Linux system call is given a
number.

* The particular link to the called kernel
routine is in the file “syscall_table.S”

* The xxxx system call is called sys_xxxx
in the kernel.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

